#![allow(clippy::uninlined_format_args)] pub mod data; pub mod util; use boytacean::{ gb::GameBoy, pad::PadKey, ppu::{PaletteInfo, PpuMode, DISPLAY_HEIGHT, DISPLAY_WIDTH}, }; use sdl2::{event::Event, keyboard::Keycode, pixels::PixelFormatEnum}; use std::time::SystemTime; use util::Graphics; use crate::util::surface_from_bytes; /// The ratio at which the logic of the Game Boy is /// going to be run, increasing this value will provide /// better emulator accuracy, please keep in mind that /// the PPU will keep running at the same speed. const LOGIC_RATIO: f32 = 2.0; /// The scale at which the screen is going to be drawn /// meaning the ratio between Game Boy resolution and /// the window size to be displayed. const SCREEN_SCALE: f32 = 2.0; /// The base title to be used in the window. static TITLE: &str = "Boytacean"; pub struct Benchmark { count: usize, } impl Benchmark { pub fn new(count: usize) -> Self { Self { count } } } impl Default for Benchmark { fn default() -> Self { Self::new(50000000) } } pub struct Emulator { system: GameBoy, graphics: Graphics, logic_ratio: f32, next_tick_time: f32, next_tick_time_i: u32, palettes: [PaletteInfo; 3], palette_index: usize, } impl Emulator { pub fn new(system: GameBoy, screen_scale: f32) -> Self { Self { system, graphics: Graphics::new( TITLE, DISPLAY_WIDTH as u32, DISPLAY_HEIGHT as u32, screen_scale, ), logic_ratio: LOGIC_RATIO, next_tick_time: 0.0, next_tick_time_i: 0, palettes: [ PaletteInfo::new( "basic", [ [0xff, 0xff, 0xff], [0xc0, 0xc0, 0xc0], [0x60, 0x60, 0x60], [0x00, 0x00, 0x00], ], ), PaletteInfo::new( "hogwards", [ [0xb6, 0xa5, 0x71], [0x8b, 0x7e, 0x56], [0x55, 0x4d, 0x35], [0x20, 0x1d, 0x13], ], ), PaletteInfo::new( "christmas", [ [0xe8, 0xe7, 0xdf], [0x8b, 0xab, 0x95], [0x9e, 0x5c, 0x5e], [0x53, 0x4d, 0x57], ], ), ], palette_index: 0, } } pub fn load_rom(&mut self, path: &str) { let rom = self.system.load_rom_file(path); println!( "========= Cartridge =========\n{}\n=============================", rom ); self.graphics .window_mut() .set_title(format!("{} [{}]", TITLE, rom.title()).as_str()) .unwrap(); } pub fn benchmark(&mut self, params: Benchmark) { println!("Going to run benchmark..."); let count = params.count; let mut cycles = 0; let initial = SystemTime::now(); for _ in 0..count { cycles += self.system.clock() as u32; } let delta = initial.elapsed().unwrap().as_millis() as f32 / 1000.0; let frequency_mhz = cycles as f32 / delta / 1000.0 / 1000.0; println!( "Took {:.2} seconds to run {} ticks ({:.2} Mhz)!", delta, count, frequency_mhz ); } pub fn toggle_palette(&mut self) { self.system .ppu() .set_palette_colors(self.palettes[self.palette_index].colors()); self.palette_index = (self.palette_index + 1) % self.palettes.len(); } pub fn run(&mut self) { // updates the icon of the window to reflect the image // and style of the emulator let surface = surface_from_bytes(&data::ICON); self.graphics.window_mut().set_icon(&surface); // creates an accelerated canvas to be used in the drawing // then clears it and presents it self.graphics.canvas.present(); // creates a texture creator for the current canvas, required // for the creation of dynamic and static textures let texture_creator = self.graphics.canvas.texture_creator(); // creates the texture streaming that is going to be used // as the target for the pixel buffer let mut texture = texture_creator .create_texture_streaming( PixelFormatEnum::RGB24, DISPLAY_WIDTH as u32, DISPLAY_HEIGHT as u32, ) .unwrap(); // allocates space for the loop ticks counter to be used in each // iteration cycle let mut counter = 0u32; // the main loop to execute the multiple machine clocks, in // theory the emulator should keep an infinite loop here 'main: loop { // increments the counter that will keep track // on the number of visual ticks since beginning counter = counter.wrapping_add(1); // obtains an event from the SDL sub-system to be // processed under the current emulation context while let Some(event) = self.graphics.event_pump.poll_event() { match event { Event::Quit { .. } => break 'main, Event::KeyDown { keycode: Some(Keycode::Escape), .. } => break 'main, Event::KeyDown { keycode: Some(Keycode::B), .. } => self.benchmark(Benchmark::default()), Event::KeyDown { keycode: Some(Keycode::P), .. } => self.toggle_palette(), Event::KeyDown { keycode: Some(keycode), .. } => { if let Some(key) = key_to_pad(keycode) { self.system.key_press(key) } } Event::KeyUp { keycode: Some(keycode), .. } => { if let Some(key) = key_to_pad(keycode) { self.system.key_lift(key) } } Event::DropFile { filename, .. } => { self.system.reset(); self.system.load_boot_default(); self.load_rom(&filename); } _ => (), } } let current_time = self.graphics.timer_subsystem.ticks(); let mut counter_cycles = 0u32; let mut last_frame = 0xffffu16; if current_time >= self.next_tick_time_i { // calculates the number of cycles that are meant to be the target // for the current "tick" operation this is basically the number of // cycles per LCD roundtrip divided by the logic ratio let cycle_limit = (GameBoy::LCD_CYCLES as f32 / self.logic_ratio) as u32; loop { // limits the number of ticks to the typical number // of cycles expected for the current logic cycle if counter_cycles >= cycle_limit { break; } // runs the Game Boy clock, this operations should // include the advance of both the CPU and the PPU counter_cycles += self.system.clock() as u32; if self.system.ppu_mode() == PpuMode::VBlank && self.system.ppu_frame() != last_frame { // clears the graphics canvas, making sure that no garbage // pixel data remaining in the pixel buffer, not doing this would // create visual glitches in OSs like Mac OS X self.graphics.canvas.clear(); // obtains the frame buffer of the Game Boy PPU and uses it // to update the stream texture, copying it then to the canvas let frame_buffer = self.system.frame_buffer().as_ref(); texture .update(None, frame_buffer, DISPLAY_WIDTH * 3) .unwrap(); self.graphics.canvas.copy(&texture, None, None).unwrap(); // presents the canvas effectively updating the screen // information presented to the user self.graphics.canvas.present(); // obtains the index of the current PPU frame, this value // is going to be used to detect for new frame presence last_frame = self.system.ppu_frame(); } } let logic_frequency = GameBoy::CPU_FREQ as f32 / GameBoy::LCD_CYCLES as f32 * self.logic_ratio; // updates the next update time reference to the current // time so that it can be used from game loop control self.next_tick_time += 1000.0 / logic_frequency; self.next_tick_time_i = self.next_tick_time.ceil() as u32; } let current_time = self.graphics.timer_subsystem.ticks(); let pending_time = self.next_tick_time_i.saturating_sub(current_time); self.graphics.timer_subsystem.delay(pending_time); } } } fn main() { // creates a new Game Boy instance and loads both the boot ROM // and the initial game ROM to "start the engine" let mut game_boy = GameBoy::new(); game_boy.load_boot_default(); // creates a new generic emulator structure loads the default // ROM file and starts running it let mut emulator = Emulator::new(game_boy, SCREEN_SCALE); emulator.load_rom("../../res/roms/pocket.gb"); emulator.toggle_palette(); emulator.run(); } fn key_to_pad(keycode: Keycode) -> Option<PadKey> { match keycode { Keycode::Up => Some(PadKey::Up), Keycode::Down => Some(PadKey::Down), Keycode::Left => Some(PadKey::Left), Keycode::Right => Some(PadKey::Right), Keycode::Return => Some(PadKey::Start), Keycode::Return2 => Some(PadKey::Start), Keycode::Space => Some(PadKey::Select), Keycode::A => Some(PadKey::A), Keycode::S => Some(PadKey::B), _ => None, } }