use crate::warnln; const DUTY_TABLE: [[u8; 8]; 4] = [ [0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 0], ]; pub struct Apu { ch1_timer: u16, ch1_sequence: u8, ch1_output: u8, ch1_sweep_slope: u8, ch1_sweep_increase: bool, ch1_sweep_pace: u8, ch1_length_timer: u8, ch1_wave_duty: u8, ch1_pace: u8, ch1_direction: u8, ch1_volume: u8, ch1_wave_length: u16, ch1_sound_length: bool, ch1_enabled: bool, ch2_timer: u16, ch2_sequence: u8, ch2_output: u8, ch2_length_timer: u8, ch2_wave_duty: u8, ch2_pace: u8, ch2_direction: u8, ch2_volume: u8, ch2_wave_length: u16, ch2_sound_length: bool, ch2_enabled: bool, ch3_timer: u16, ch3_sequence: u8, ch3_output: u8, ch3_dac: bool, ch3_length_timer: u8, ch3_output_level: u8, ch3_wave_length: u16, ch3_sound_length: bool, ch3_enabled: bool, wave_ram: [u8; 16], } impl Apu { pub fn new() -> Self { Self { ch1_timer: 0, ch1_sequence: 0, ch1_output: 0, ch1_sweep_slope: 0x0, ch1_sweep_increase: false, ch1_sweep_pace: 0x0, ch1_length_timer: 0x0, ch1_wave_duty: 0x0, ch1_pace: 0x0, ch1_direction: 0x0, ch1_volume: 0x0, ch1_wave_length: 0x0, ch1_sound_length: false, ch1_enabled: false, ch2_timer: 0, ch2_sequence: 0, ch2_output: 0, ch2_length_timer: 0x0, ch2_wave_duty: 0x0, ch2_pace: 0x0, ch2_direction: 0x0, ch2_volume: 0x0, ch2_wave_length: 0x0, ch2_sound_length: false, ch2_enabled: false, ch3_timer: 0, ch3_sequence: 0, ch3_output: 0, ch3_dac: false, ch3_length_timer: 0x0, ch3_output_level: 0x0, ch3_wave_length: 0x0, ch3_sound_length: false, ch3_enabled: false, wave_ram: [0u8; 16], } } pub fn clock(&mut self, cycles: u8) { self.clock_f(cycles, 4194304); } pub fn clock_f(&mut self, cycles: u8, freq: u32) { // @todo the performance here requires improvement for _ in 0..cycles { self.cycle(freq); } } pub fn read(&mut self, addr: u16) -> u8 { match addr { _ => { warnln!("Reading from unknown APU location 0x{:04x}", addr); 0xff } } } pub fn write(&mut self, addr: u16, value: u8) { match addr { // 0xFF10 — NR10: Channel 1 sweep 0xff10 => { self.ch1_sweep_slope = value & 0x03; self.ch1_sweep_increase = value & 0x04 == 0x04; self.ch1_sweep_pace = (value & 0x70) >> 4; } // 0xFF11 — NR11: Channel 1 length timer & duty cycle 0xff11 => { self.ch1_length_timer = value & 0x3f; self.ch1_wave_duty = (value & 0xc0) >> 6; } // 0xFF12 — NR12: Channel 1 volume & envelope 0xff12 => { self.ch1_pace = value & 0x07; self.ch1_direction = (value & 0x08) >> 3; self.ch1_volume = (value & 0xf0) >> 4; } // 0xFF13 — NR13: Channel 1 wavelength low 0xff13 => { self.ch1_wave_length = (self.ch1_wave_length & 0xff00) | value as u16; } // 0xFF14 — NR14: Channel 1 wavelength high & control 0xff14 => { self.ch1_wave_length = (self.ch1_wave_length & 0x00ff) | (((value & 0x07) as u16) << 8); self.ch1_sound_length |= value & 0x40 == 0x40; self.ch1_enabled |= value & 0x80 == 0x80; println!("CH1 Enabled {}", self.ch1_enabled); } // 0xFF16 — NR21: Channel 2 length timer & duty cycle 0xff16 => { self.ch2_length_timer = value & 0x3f; self.ch2_wave_duty = (value & 0xc0) >> 6; } // 0xFF17 — NR22: Channel 2 volume & envelope 0xff17 => { self.ch2_pace = value & 0x07; self.ch2_direction = (value & 0x08) >> 3; self.ch2_volume = (value & 0xf0) >> 4; } // 0xFF18 — NR23: Channel 2 wavelength low 0xff18 => { self.ch2_wave_length = (self.ch2_wave_length & 0xff00) | value as u16; } // 0xFF19 — NR24: Channel 2 wavelength high & control 0xff19 => { self.ch2_wave_length = (self.ch2_wave_length & 0x00ff) | (((value & 0x07) as u16) << 8); self.ch2_sound_length |= value & 0x40 == 0x40; self.ch2_enabled |= value & 0x80 == 0x80; if value & 0x80 == 0x80 { //self.ch2_timer = 0; //self.ch2_sequence = 0; //@todo improve this reset operation } println!("CH2 Enabled {}", self.ch2_enabled); } // 0xFF1A — NR30: Channel 3 DAC enable 0xff1a => { self.ch3_dac = value & 0x80 == 0x80; } // 0xFF1B — NR31: Channel 3 length timer 0xff1b => { self.ch3_length_timer = value; } // 0xFF1C — NR32: Channel 3 output level 0xff1c => { self.ch3_output_level = value & 0x60 >> 5; } // 0xFF1D — NR33: Channel 3 wavelength low [write-only] 0xff1d => { self.ch3_wave_length = (self.ch3_wave_length & 0xff00) | value as u16; } // 0xFF1E — NR34: Channel 3 wavelength high & control 0xff1e => { self.ch3_wave_length = (self.ch3_wave_length & 0x00ff) | (((value & 0x07) as u16) << 8); self.ch3_sound_length |= value & 0x40 == 0x40; self.ch3_enabled |= value & 0x80 == 0x80; println!("CH3 Enabled {}", self.ch3_enabled); } // 0xFF30-0xFF3F — Wave pattern RAM 0xff30..=0xff3f => { self.wave_ram[addr as usize - 0xff30] = value; } _ => warnln!("Writing in unknown APU location 0x{:04x}", addr), } } #[inline(always)] pub fn cycle(&mut self, freq: u32) { self.ch1_timer = self.ch1_timer.saturating_sub(1); if self.ch1_timer == 0 { let target_freq = 1048576.0 / (2048.0 - self.ch1_wave_length as f32); self.ch1_timer = (freq as f32 / target_freq) as u16; self.ch1_sequence = (self.ch1_sequence + 1) & 7; if self.ch1_enabled { self.ch1_output = if DUTY_TABLE[self.ch1_wave_duty as usize][self.ch1_sequence as usize] == 1 { self.ch1_volume } else { 0 }; } else { self.ch1_output = 0; } } self.ch2_timer = self.ch2_timer.saturating_sub(1); if self.ch2_timer == 0 { let target_freq = 1048576.0 / (2048.0 - self.ch2_wave_length as f32); self.ch2_timer = (freq as f32 / target_freq) as u16; self.ch2_sequence = (self.ch2_sequence + 1) & 7; if self.ch2_enabled { self.ch2_output = if DUTY_TABLE[self.ch2_wave_duty as usize][self.ch2_sequence as usize] == 1 { self.ch2_volume } else { 0 }; } else { self.ch2_output = 0; } } } pub fn output(&self) -> u8 { self.ch1_output + self.ch2_output } }