use core::panic; use crate::{ apu::Apu, debugln, inst::{EXTENDED, INSTRUCTIONS}, mmu::Mmu, pad::Pad, ppu::Ppu, timer::Timer, }; pub const PREFIX: u8 = 0xcb; pub struct Cpu { pub pc: u16, pub sp: u16, pub a: u8, pub b: u8, pub c: u8, pub d: u8, pub e: u8, pub h: u8, pub l: u8, ime: bool, zero: bool, sub: bool, half_carry: bool, carry: bool, halted: bool, /// Reference to the MMU (Memory Management Unit) to be used /// for memory bus access operations. pub mmu: Mmu, /// Temporary counter used to control the number of cycles /// taken by the current or last CPU operation. pub cycles: u8, } impl Cpu { pub fn new(mmu: Mmu) -> Self { Self { pc: 0x0, sp: 0x0, a: 0x0, b: 0x0, c: 0x0, d: 0x0, e: 0x0, h: 0x0, l: 0x0, ime: false, zero: false, sub: false, half_carry: false, carry: false, halted: false, mmu, cycles: 0, } } pub fn reset(&mut self) { self.pc = 0x0; self.sp = 0x0; self.a = 0x0; self.b = 0x0; self.c = 0x0; self.d = 0x0; self.e = 0x0; self.h = 0x0; self.l = 0x0; self.ime = false; self.zero = false; self.sub = false; self.half_carry = false; self.carry = false; self.halted = false; self.cycles = 0; } /// Sets the CPU registers and some of the memory space to the /// state expected after the Game Boy boot ROM executes, using /// these values its possible to skip the boot loading process. pub fn boot(&mut self) { self.pc = 0x0100; self.sp = 0xfffe; self.a = 0x01; self.b = 0xff; self.c = 0x13; self.d = 0x00; self.e = 0xc1; self.h = 0x84; self.l = 0x03; self.zero = false; self.sub = false; self.half_carry = false; self.carry = false; // updates part of the MMU state, disabling the // boot memory overlap and setting the LCD control // register to enabled (required by some ROMs) self.mmu.set_boot_active(false); self.mmu.write(0xff40, 0x91); } pub fn clock(&mut self) -> u8 { // gathers the PC (program counter) reference that // is going to be used in the fetching phase let pc = self.pc; #[cfg(feature = "debug")] if pc >= 0x8000 && pc < 0x9fff { panic!("Invalid PC area at 0x{:04x}", pc); } // @TODO this is so bad, need to improve this by an order // of magnitude, to be able to have better performance if self.halted && (((self.mmu.ie & 0x01 == 0x01) && self.mmu.ppu().int_vblank()) || ((self.mmu.ie & 0x02 == 0x02) && self.mmu.ppu().int_stat()) || ((self.mmu.ie & 0x04 == 0x04) && self.mmu.timer().int_tima()) || ((self.mmu.ie & 0x10 == 0x10) && self.mmu.pad().int_pad())) { self.halted = false; } if self.ime { // @TODO aggregate all of this interrupts in the MMU, as there's // a lot of redundant code involved in here which complicates the // readability and maybe performance of this code if (self.mmu.ie & 0x01 == 0x01) && self.mmu.ppu().int_vblank() { debugln!("Going to run V-Blank interrupt handler (0x40)"); self.disable_int(); self.push_word(pc); self.pc = 0x40; // acknowledges that the V-Blank interrupt has been // properly handled self.mmu.ppu().ack_vblank(); // in case the CPU is currently halted waiting // for an interrupt, releases it if self.halted { self.halted = false; } return 24; } // @TODO aggregate the handling of these interrupts else if (self.mmu.ie & 0x02 == 0x02) && self.mmu.ppu().int_stat() { debugln!("Going to run LCD STAT interrupt handler (0x48)"); self.disable_int(); self.push_word(pc); self.pc = 0x48; // acknowledges that the STAT interrupt has been // properly handled self.mmu.ppu().ack_stat(); // in case the CPU is currently halted waiting // for an interrupt, releases it if self.halted { self.halted = false; } return 24; } // @TODO aggregate the handling of these interrupts else if (self.mmu.ie & 0x04 == 0x04) && self.mmu.timer().int_tima() { debugln!("Going to run Timer interrupt handler (0x50)"); self.disable_int(); self.push_word(pc); self.pc = 0x50; // acknowledges that the timer interrupt has been // properly handled self.mmu.timer().ack_tima(); // in case the CPU is currently halted waiting // for an interrupt, releases it if self.halted { self.halted = false; } return 24; } // @TODO aggregate the handling of these interrupts else if (self.mmu.ie & 0x10 == 0x10) && self.mmu.pad().int_pad() { debugln!("Going to run JoyPad interrupt handler (0x60)"); self.disable_int(); self.push_word(pc); self.pc = 0x60; // acknowledges that the pad interrupt has been // properly handled self.mmu.pad().ack_pad(); // in case the CPU is currently halted waiting // for an interrupt, releases it if self.halted { self.halted = false; } return 24; } } // in case the CPU is currently in the halted state // returns the control flow immediately with the associated // number of cycles estimated for the halted execution if self.halted { return 4; } // fetches the current instruction and increments // the PC (program counter) accordingly let mut opcode = self.mmu.read(self.pc); self.pc = self.pc.wrapping_add(1); let is_prefix = opcode == PREFIX; let inst: &(fn(&mut Cpu), u8, &str); if is_prefix { opcode = self.mmu.read(self.pc); self.pc = self.pc.wrapping_add(1); inst = &EXTENDED[opcode as usize]; } else { inst = &INSTRUCTIONS[opcode as usize]; } let (inst_fn, inst_time, inst_str) = inst; if *inst_str == "! UNIMP !" || *inst_str == "HALT" { if *inst_str == "HALT" { debugln!("HALT with IE=0x{:02x} IME={}", self.mmu.ie, self.ime); } debugln!( "{}\t(0x{:02x})\t${:04x} {}", inst_str, opcode, pc, is_prefix ); } // calls the current instruction and increments the number of // cycles executed by the instruction time of the instruction // that has just been executed self.cycles = 0; inst_fn(self); self.cycles = self.cycles.wrapping_add(*inst_time); // returns the number of cycles that the operation // that has been executed has taken self.cycles } #[inline(always)] pub fn mmu(&mut self) -> &mut Mmu { &mut self.mmu } #[inline(always)] pub fn mmu_i(&self) -> &Mmu { &self.mmu } #[inline(always)] pub fn ppu(&mut self) -> &mut Ppu { self.mmu().ppu() } #[inline(always)] pub fn apu(&mut self) -> &mut Apu { self.mmu().apu() } #[inline(always)] pub fn apu_i(&self) -> &Apu { self.mmu_i().apu_i() } #[inline(always)] pub fn pad(&mut self) -> &mut Pad { self.mmu().pad() } #[inline(always)] pub fn timer(&mut self) -> &mut Timer { self.mmu().timer() } #[inline(always)] pub fn halted(&self) -> bool { self.halted } #[inline(always)] pub fn cycles(&self) -> u8 { self.cycles } #[inline(always)] pub fn pc(&self) -> u16 { self.pc } #[inline(always)] pub fn sp(&self) -> u16 { self.sp } #[inline(always)] pub fn af(&self) -> u16 { (self.a as u16) << 8 | self.f() as u16 } #[inline(always)] pub fn bc(&self) -> u16 { (self.b as u16) << 8 | self.c as u16 } #[inline(always)] pub fn f(&self) -> u8 { let mut f = 0x0u8; if self.zero { f |= 0x80; } if self.sub { f |= 0x40; } if self.half_carry { f |= 0x20; } if self.carry { f |= 0x10; } f } #[inline(always)] pub fn set_f(&mut self, value: u8) { self.zero = value & 0x80 == 0x80; self.sub = value & 0x40 == 0x40; self.half_carry = value & 0x20 == 0x20; self.carry = value & 0x10 == 0x10; } #[inline(always)] pub fn set_af(&mut self, value: u16) { self.a = (value >> 8) as u8; self.set_f(value as u8); } #[inline(always)] pub fn set_bc(&mut self, value: u16) { self.b = (value >> 8) as u8; self.c = value as u8; } #[inline(always)] pub fn de(&self) -> u16 { (self.d as u16) << 8 | self.e as u16 } #[inline(always)] pub fn set_de(&mut self, value: u16) { self.d = (value >> 8) as u8; self.e = value as u8; } #[inline(always)] pub fn hl(&self) -> u16 { (self.h as u16) << 8 | self.l as u16 } #[inline(always)] pub fn set_hl(&mut self, value: u16) { self.h = (value >> 8) as u8; self.l = value as u8; } #[inline(always)] pub fn read_u8(&mut self) -> u8 { let byte = self.mmu.read(self.pc); self.pc = self.pc.wrapping_add(1); byte } #[inline(always)] pub fn read_u16(&mut self) -> u16 { let byte1 = self.read_u8(); let byte2 = self.read_u8(); byte1 as u16 | ((byte2 as u16) << 8) } #[inline(always)] pub fn push_byte(&mut self, byte: u8) { self.sp = self.sp.wrapping_sub(1); self.mmu.write(self.sp, byte); } #[inline(always)] pub fn push_word(&mut self, word: u16) { self.push_byte((word >> 8) as u8); self.push_byte(word as u8); } #[inline(always)] pub fn pop_byte(&mut self) -> u8 { let byte = self.mmu.read(self.sp); self.sp = self.sp.wrapping_add(1); byte } #[inline(always)] pub fn pop_word(&mut self) -> u16 { self.pop_byte() as u16 | ((self.pop_byte() as u16) << 8) } #[inline(always)] pub fn get_zero(&self) -> bool { self.zero } #[inline(always)] pub fn set_zero(&mut self, value: bool) { self.zero = value } #[inline(always)] pub fn get_sub(&self) -> bool { self.sub } #[inline(always)] pub fn set_sub(&mut self, value: bool) { self.sub = value; } #[inline(always)] pub fn get_half_carry(&self) -> bool { self.half_carry } #[inline(always)] pub fn set_half_carry(&mut self, value: bool) { self.half_carry = value } #[inline(always)] pub fn get_carry(&self) -> bool { self.carry } #[inline(always)] pub fn set_carry(&mut self, value: bool) { self.carry = value; } #[inline(always)] pub fn halt(&mut self) { self.halted = true; } #[inline(always)] pub fn stop(&mut self) { panic!("STOP is not implemented"); } #[inline(always)] pub fn enable_int(&mut self) { self.ime = true; } #[inline(always)] pub fn disable_int(&mut self) { self.ime = false; } }