pub const VRAM_SIZE: usize = 8192; pub const HRAM_SIZE: usize = 128; pub const PALETTE_SIZE: usize = 4; pub const RGB_SIZE: usize = 3; /// The number of tiles that can be store in Game Boy's /// VRAM memory according to specifications. pub const TILE_COUNT: usize = 384; /// The width of the Game Boy screen in pixels. pub const DISPLAY_WIDTH: usize = 160; /// The height of the Game Boy screen in pixels. pub const DISPLAY_HEIGHT: usize = 144; // The size of the RGB frame buffer in bytes. pub const FRAME_BUFFER_SIZE: usize = DISPLAY_WIDTH * DISPLAY_HEIGHT * RGB_SIZE; // Defines the Game Boy pixel type as a buffer // with the size of RGB (3 bytes). pub type Pixel = [u8; RGB_SIZE]; /// Represents the Game Boy PPU (Pixel Processing Unit) and controls /// all of the logic behind the graphics processing and presentation. /// Should store both the VRAM and HRAM together with the internal /// graphic related registers. /// Outputs the screen as a RGB 8 bit frame buffer. /// /// # Basic usage /// ```rust /// let ppu = Ppu::new(); /// ppu.clock(); /// ``` pub struct Ppu { /// The 8 bit based RGB frame buffer with the /// processed set of pixels ready to be displayed on screen. pub frame_buffer: Box<[u8; FRAME_BUFFER_SIZE]>, /// Video dedicated memory (VRAM) where both the tiles and /// the sprites/objects are going to be stored. pub vram: [u8; VRAM_SIZE], /// High RAM memory that should provide extra speed for regular /// operations. pub hram: [u8; HRAM_SIZE], /// The current set of processed tiles that are store in the /// PPU related structures. tiles: [[[u8; 8]; 8]; TILE_COUNT], /// The palette of colors that is currently loaded in Game Boy /// and used for background (tiles). palette: [Pixel; PALETTE_SIZE], // The palette that is going to be used for sprites/objects #0. palette_obj_0: [Pixel; PALETTE_SIZE], // The palette that is going to be used for sprites/objects #1. palette_obj_1: [Pixel; PALETTE_SIZE], /// The scroll Y register that controls the Y offset /// of the background. scy: u8, /// The scroll X register that controls the X offset /// of the background. scx: u8, /// The current scan line in processing, should /// range between 0 (0x00) and 153 (0x99), representing /// the 154 lines plus 10 extra v-blank lines. ly: u8, // The line compare register that is going to be used // in the STATE and associated interrupts. lyc: u8, /// The current execution mode of the PPU, should change /// between states over the drawing of a frame. mode: PpuMode, /// Internal clock counter used to control the time in ticks /// spent in each of the PPU modes. mode_clock: u16, /// Controls if the background is going to be drawn to screen. switch_bg: bool, /// Controls if the sprites/objects are going to be drawn to screen. switch_obj: bool, /// Defines the size in pixels of the object (false=8x8, true=8x16). obj_size: bool, /// Controls the map that is going to be drawn to screen, the /// offset in VRAM will be adjusted according to this /// (false=0x9800, true=0x9c000). bg_map: bool, /// If the background tile set is active meaning that the /// negative based indexes are going to be used. bg_tile: bool, // Controls if the window is meant to be drawn. switch_window: bool, // Controls the offset of the map that is going to be drawn // for the window section of the screen. window_map: bool, /// Flag that controls if the LCD screen is ON and displaying /// content. switch_lcd: bool, stat_hblank: bool, stat_vblank: bool, stat_oam: bool, stat_lyc: bool, // Boolean value set when the V-Blank interrupt should be handled // by the next CPU clock. int_vblank: bool, } #[derive(Clone, Copy, PartialEq)] pub enum PpuMode { HBlank = 0, VBlank = 1, OamRead = 2, VramRead = 3, } impl Ppu { pub fn new() -> Self { Self { frame_buffer: Box::new([0u8; DISPLAY_WIDTH * DISPLAY_HEIGHT * RGB_SIZE]), vram: [0u8; VRAM_SIZE], hram: [0u8; HRAM_SIZE], tiles: [[[0u8; 8]; 8]; TILE_COUNT], palette: [[0u8; RGB_SIZE]; PALETTE_SIZE], palette_obj_0: [[0u8; RGB_SIZE]; PALETTE_SIZE], palette_obj_1: [[0u8; RGB_SIZE]; PALETTE_SIZE], scy: 0x0, scx: 0x0, ly: 0x0, lyc: 0x0, mode: PpuMode::OamRead, mode_clock: 0, switch_bg: false, switch_obj: false, obj_size: false, bg_map: false, bg_tile: false, switch_window: false, window_map: false, switch_lcd: false, stat_hblank: false, stat_vblank: false, stat_oam: false, stat_lyc: false, int_vblank: false, } } pub fn clock(&mut self, cycles: u8) { if !self.switch_lcd { return; } // increments the current mode clock by the provided amount // of CPU cycles (probably coming from a previous CPU clock) self.mode_clock += cycles as u16; match self.mode { PpuMode::OamRead => { if self.mode_clock >= 80 { self.mode_clock = 0; self.mode = PpuMode::VramRead; } } PpuMode::VramRead => { if self.mode_clock >= 172 { if self.switch_bg { self.render_line(); } self.mode_clock = 0; self.mode = PpuMode::HBlank; } } PpuMode::HBlank => { if self.mode_clock >= 204 { self.ly += 1; // in case we've reached the end of the // screen we're now entering the v-blank if self.ly == 144 { self.int_vblank = true; self.mode = PpuMode::VBlank; // self.drawData // @todo implement this one } else { self.mode = PpuMode::OamRead; } self.mode_clock = 0; } } PpuMode::VBlank => { if self.mode_clock >= 456 { self.ly += 1; // in case the end of v-blank has been reached then // we must jump again to the OAM read mode and reset // the scan line counter to the zero value if self.ly == 154 { self.mode = PpuMode::OamRead; self.ly = 0; } self.mode_clock = 0; } } } } pub fn read(&mut self, addr: u16) -> u8 { match addr & 0x00ff { 0x0040 => { let value = if self.switch_bg { 0x01 } else { 0x00 } | if self.switch_obj { 0x02 } else { 0x00 } | if self.obj_size { 0x02 } else { 0x00 } | if self.bg_map { 0x08 } else { 0x00 } | if self.bg_tile { 0x10 } else { 0x00 } | if self.switch_window { 0x20 } else { 0x00 } | if self.window_map { 0x40 } else { 0x00 } | if self.switch_lcd { 0x80 } else { 0x00 }; value } 0x0041 => { let value = if self.stat_hblank { 0x04 } else { 0x00 } | if self.stat_vblank { 0x08 } else { 0x00 } | if self.stat_oam { 0x10 } else { 0x00 } | if self.stat_lyc { 0x20 } else { 0x00 } | if self.lyc == self.ly { 0x04 } else { 0x00 } | (self.mode as u8 & 0x03); value } 0x0042 => self.scy, 0x0043 => self.scx, 0x0044 => self.ly, 0x0045 => self.lyc, addr => panic!("Reading from unknown PPU location 0x{:04x}", addr), } } pub fn write(&mut self, addr: u16, value: u8) { match addr & 0x00ff { 0x0040 => { self.switch_bg = value & 0x01 == 0x01; self.switch_obj = value & 0x02 == 0x02; self.obj_size = value & 0x04 == 0x04; self.bg_map = value & 0x08 == 0x08; self.bg_tile = value & 0x10 == 0x10; self.switch_window = value & 0x20 == 0x20; self.window_map = value & 0x40 == 0x40; self.switch_lcd = value & 0x80 == 0x80; } 0x0041 => { self.stat_hblank = value & 0x04 == 0x04; self.stat_vblank = value & 0x08 == 0x08; self.stat_oam = value & 0x10 == 0x10; self.stat_lyc = value & 0x20 == 0x20; } 0x0042 => self.scy = value, 0x0043 => self.scx = value, 0x0045 => self.lyc = value, 0x0047 => { for index in 0..PALETTE_SIZE { match (value >> (index * 2)) & 3 { 0 => self.palette[index] = [255, 255, 255], 1 => self.palette[index] = [192, 192, 192], 2 => self.palette[index] = [96, 96, 96], 3 => self.palette[index] = [0, 0, 0], color_index => panic!("Invalid palette color index {:04x}", color_index), } } } 0x0048 => { for index in 0..PALETTE_SIZE { match (value >> (index * 2)) & 3 { 0 => self.palette_obj_0[index] = [255, 255, 255], 1 => self.palette_obj_0[index] = [192, 192, 192], 2 => self.palette_obj_0[index] = [96, 96, 96], 3 => self.palette_obj_0[index] = [0, 0, 0], color_index => panic!("Invalid palette color index {:04x}", color_index), } } } 0x0049 => { for index in 0..PALETTE_SIZE { match (value >> (index * 2)) & 3 { 0 => self.palette_obj_1[index] = [255, 255, 255], 1 => self.palette_obj_1[index] = [192, 192, 192], 2 => self.palette_obj_1[index] = [96, 96, 96], 3 => self.palette_obj_1[index] = [0, 0, 0], color_index => panic!("Invalid palette color index {:04x}", color_index), } } } 0x004a => { println!("Writing to $FF4A - WY (Window Y Position) (R/W)") } 0x004b => { println!("Writing to $FF4B - WX (Window X Position + 7) (R/W)") } 0x007f => (), addr => panic!("Writing in unknown PPU location 0x{:04x}", addr), } } pub fn fill_frame_buffer(&mut self, color: Pixel) { for index in (0..self.frame_buffer.len()).step_by(RGB_SIZE) { self.frame_buffer[index] = color[0]; self.frame_buffer[index + 1] = color[1]; self.frame_buffer[index + 2] = color[2]; } } pub fn int_vblank(&self) -> bool { self.int_vblank } pub fn ack_vblank(&mut self) { self.int_vblank = false; } /// Prints the tile data information to the stdout, this is /// useful for debugging purposes. pub fn draw_tile_stdout(&self, tile_index: usize) { for y in 0..8 { for x in 0..8 { print!("{}", self.tiles[tile_index][y as usize][x as usize]); } print!("\n"); } } /// Updates the tile structure with the value that has /// just been written to a location on the VRAM associated /// with tiles. pub fn update_tile(&mut self, addr: u16, _value: u8) { let addr = (addr & 0x1ffe) as usize; let tile_index = ((addr >> 4) & 0x01ff) as usize; let y = ((addr >> 1) & 0x0007) as usize; let mut mask; for x in 0..8 { mask = 1 << (7 - x); self.tiles[tile_index][y][x] = if self.vram[addr] & mask > 0 { 0x1 } else { 0x0 } | if self.vram[addr + 1] & mask > 0 { 0x2 } else { 0x0 } } } fn render_line(&mut self) { // obtains the base address of the background map using the bg map flag // that control which background map is going to be used let mut map_offset: usize = if self.bg_map { 0x1c00 } else { 0x1800 }; // increments the offset by the number of lines and the SCY (scroll Y) // divided by 8 (as the tiles are 8x8 pixels) map_offset += ((((self.ly + self.scy) & 0xff) >> 3) as usize) * 32; // calculates the sprite line offset by using the SCX register // shifted by 3 meaning that the tiles are 8x8 let mut line_offset: usize = (self.scx >> 3) as usize; // calculates both the current Y and X positions within the tiles let y = ((self.scy + self.ly) & 0x07) as usize; let mut x = (self.scx & 0x07) as usize; // calculates the index of the initial tile in drawing, // if the tile data set in use is #1, the indices are // signed, then calculates a real tile offset let mut tile_index = self.vram[map_offset + line_offset] as usize; if !self.bg_tile && tile_index < 128 { tile_index += 256; } // calculates the frame buffer offset position assuming the proper // Game Boy screen width and RGB pixel (3 bytes) size let mut frame_offset = self.ly as usize * DISPLAY_WIDTH * RGB_SIZE; for _index in 0..DISPLAY_WIDTH { // obtains the current pixel data from the tile and // re-maps it according to the current palette let pixel = self.tiles[tile_index][y][x]; let color = self.palette[pixel as usize]; // set the color pixel in the frame buffer self.frame_buffer[frame_offset] = color[0]; self.frame_buffer[frame_offset + 1] = color[1]; self.frame_buffer[frame_offset + 2] = color[2]; // increments the offset of the frame buffer by the // size of an RGB pixel (which is 3 bytes) frame_offset += RGB_SIZE; // increments the current tile X position in drawing x += 1; // in case the end of tile width has been reached then // a new tile must be retrieved for plotting if x == 8 { // resets the tile X position to the base value // as a new tile is going to be drawn x = 0; // calculates the new line tile offset making sure that // the maximum of 32 is not overflown line_offset = (line_offset + 1) & 31; // calculates the tile index nad makes sure the value // takes into consideration the bg tile value tile_index = self.vram[map_offset + line_offset] as usize; if !self.bg_tile && tile_index < 128 { tile_index += 256; } } } } /// Obtains the current level of the LCD interrupt by /// checking the current PPU state in various sections. fn interrupt_level(&self) -> bool { self.stat_lyc && self.lyc == self.ly || self.stat_oam && self.mode == PpuMode::OamRead || self.stat_vblank && self.mode == PpuMode::VBlank || self.stat_vblank && self.mode == PpuMode::HBlank } }