Newer
Older
import {
Emulator,
EmulatorBase,
import {
Cartridge,
default as _wasm,
GameBoy,
PadKey,
PpuMode
} from "./lib/boytacean.js";
import info from "./package.json";
import { base64ToBuffer, bufferToBase64 } from "./util";
declare const require: any;
const LOGIC_HZ = 4194304;
const VISUAL_HZ = 59.7275;
const IDLE_HZ = 10;
/**
* The rate at which the local storage RAM state flush
* operation is going to be performed, this value is the
* number of seconds in between flush operations (eg: 5 seconds).
*/
const STORE_RATE = 5;
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
const SAMPLE_RATE = 2;
const KEYS_NAME: Record<string, number> = {
ArrowUp: PadKey.Up,
ArrowDown: PadKey.Down,
ArrowLeft: PadKey.Left,
ArrowRight: PadKey.Right,
Start: PadKey.Start,
Select: PadKey.Select,
A: PadKey.A,
B: PadKey.B
};
const ROM_PATH = require("../../res/roms/20y.gb");
/**
* Top level class that controls the emulator behaviour
* and "joins" all the elements together to bring input/output
* of the associated machine.
*/
export class GameboyEmulator extends EmulatorBase implements Emulator {
/**
* The Game Boy engine (probably coming from WASM) that
* is going to be used for the emulation.
*/
private gameBoy: GameBoy | null = null;
/**
* The descriptive name of the engine that is currently
* in use to emulate the system.
*/
private _engine: string | null = null;
private logicFrequency: number = LOGIC_HZ;
private visualFrequency: number = VISUAL_HZ;
private idleFrequency: number = IDLE_HZ;
private paused: boolean = false;
private nextTickTime: number = 0;
private fps: number = 0;
private frameStart: number = new Date().getTime();
private frameCount: number = 0;
private paletteIndex: number = 0;
private storeCycles: number = LOGIC_HZ * STORE_RATE;
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
private romName: string | null = null;
private romData: Uint8Array | null = null;
private romSize: number = 0;
private cartridge: Cartridge | null = null;
async main({ romUrl }: { romUrl?: string }) {
// initializes the WASM module, this is required
// so that the global symbols become available
await wasm();
// boots the emulator subsystem with the initial
// ROM retrieved from a remote data source
await this.boot({ loadRom: true, romPath: romUrl ?? undefined });
// the counter that controls the overflowing cycles
// from tick to tick operation
let pending = 0;
// runs the sequence as an infinite loop, running
// the associated CPU cycles accordingly
while (true) {
// in case the machine is paused we must delay the execution
// a little bit until the paused state is recovered
if (this.paused) {
await new Promise((resolve) => {
setTimeout(resolve, 1000 / this.idleFrequency);
});
continue;
}
// obtains the current time, this value is going
// to be used to compute the need for tick computation
let currentTime = new Date().getTime();
try {
pending = this.tick(
currentTime,
pending,
Math.round(this.logicFrequency / this.visualFrequency)
);
} catch (err) {
// sets the default error message to be displayed
// to the user, this value may be overridden in case
// a better and more explicit message can be determined
let message = String(err);
// verifies if the current issue is a panic one
// and updates the message value if that's the case
const messageNormalized = (err as Error).message.toLowerCase();
const isPanic =
messageNormalized.startsWith("unreachable") ||
messageNormalized.startsWith("recursive use of an object");
if (isPanic) {
message = "Unrecoverable error, restarting Game Boy";
}
// displays the error information to both the end-user
// and the developer (for diagnostics)
this.trigger("message", {
text: message,
error: true,
timeout: 5000
});
console.error(err);
// pauses the machine, allowing the end-user to act
// on the error in a proper fashion
this.pause();
// if we're talking about a panic, proper action must be taken
// which in this case it means restarting both the WASM sub
// system and the machine state (to be able to recover)
// also sets the default color on screen to indicate the issue
if (isPanic) {
await wasm();
await this.boot({ restore: false });
this.trigger("error");
}
}
// calculates the amount of time until the next draw operation
// this is the amount of time that is going to be pending
currentTime = new Date().getTime();
const pendingTime = Math.max(this.nextTickTime - currentTime, 0);
// waits a little bit for the next frame to be draw,
// this should control the flow of render
await new Promise((resolve) => {
setTimeout(resolve, pendingTime);
});
}
}
tick(currentTime: number, pending: number, cycles: number = 70224) {
// in case the time to draw the next frame has not been
// reached the flush of the "tick" logic is skipped
if (currentTime < this.nextTickTime) return pending;
// calculates the number of ticks that have elapsed since the
// last draw operation, this is critical to be able to properly
// operate the clock of the CPU in frame drop situations
if (this.nextTickTime === 0) this.nextTickTime = currentTime;
let ticks = Math.ceil(
(currentTime - this.nextTickTime) /
((1 / this.visualFrequency) * 1000)
);
ticks = Math.max(ticks, 1);
// initializes the counter of cycles with the pending number
// of cycles coming from the previous tick
let counterCycles = pending;
let lastFrame = -1;
while (true) {
// limits the number of cycles to the provided
// cycle value passed as a parameter
if (counterCycles >= cycles) {
break;
}
// runs the Game Boy clock, this operations should
// include the advance of both the CPU and the PPU
const tickCycles = this.gameBoy?.clock() ?? 0;
counterCycles += tickCycles;
// in case the current PPU mode is VBlank and the
// frame is different from the previously rendered
// one then it's time to update the canvas
if (
this.gameBoy?.ppu_mode() === PpuMode.VBlank &&
this.gameBoy?.ppu_frame() !== lastFrame
) {
// updates the reference to the last frame index
// to be used for comparison in the next tick
lastFrame = this.gameBoy?.ppu_frame();
// triggers the frame event indicating that
// a new frame is now available for drawing
this.trigger("frame");
// in case the current cartridge is battery backed
// then we need to check if a RAM flush to local
// storage operation is required
if (this.cartridge && this.cartridge.has_battery()) {
this.storeCycles -= tickCycles;
if (this.storeCycles <= 0) {
this.storeRam();
this.storeCycles = this.logicFrequency * STORE_RATE;
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
}
}
// increments the number of frames rendered in the current
// section, this value is going to be used to calculate FPS
this.frameCount += 1;
// in case the target number of frames for FPS control
// has been reached calculates the number of FPS and
// flushes the value to the screen
if (this.frameCount >= this.visualFrequency * SAMPLE_RATE) {
const currentTime = new Date().getTime();
const deltaTime = (currentTime - this.frameStart) / 1000;
const fps = Math.round(this.frameCount / deltaTime);
this.fps = fps;
this.frameCount = 0;
this.frameStart = currentTime;
}
// updates the next update time reference to the, so that it
// can be used to control the game loop
this.nextTickTime += (1000 / this.visualFrequency) * ticks;
// calculates the new number of pending (overflow) cycles
// that are going to be added to the next iteration
return counterCycles - cycles;
}
/**
* Starts the current machine, setting the internal structure in
* a proper state to start drawing and receiving input.
*
* This method can also be used to load a new ROM into the machine.
*
* @param options The options that are going to be used in the
* starting of the machine, includes information on the ROM and
* the emulator engine to use.
*/
async boot({
engine = "neo",
restore = true,
loadRom = false,
romPath = ROM_PATH,
romName = null,
romData = null
}: {
engine?: string | null;
restore?: boolean;
loadRom?: boolean;
romPath?: string;
romName?: string | null;
romData?: Uint8Array | null;
} = {}) {
// in case a remote ROM loading operation has been
// requested then loads it from the remote origin
if (loadRom) {
({ name: romName, data: romData } = await this.fetchRom(romPath));
} else if (romName === null || romData === null) {
[romName, romData] = [this.romName, this.romData];
}
// selects the proper engine for execution
// and builds a new instance of it
switch (engine) {
case "neo":
this.gameBoy = new GameBoy();
break;
default:
if (!this.gameBoy) {
throw new Error("No engine requested");
}
break;
}
// runs the initial palette set operation, restoring
// the palette of the emulator according to the currently
// selected one
this.setPalette();
// resets the Game Boy engine to restore it into
// a valid state ready to be used
this.gameBoy.reset();
this.gameBoy.load_boot_default();
const cartridge = this.gameBoy.load_rom_ws(romData!);
// updates the name of the currently selected engine
// to the one that has been provided (logic change)
if (engine) this._engine = engine;
// updates the ROM name in case there's extra information
// coming from the cartridge
romName = cartridge.title() ? cartridge.title() : romName;
// updates the complete set of global information that
// is going to be displayed
this.setRom(romName!, romData!, cartridge);
// in case there's a battery involved tries to load the
// current RAM from the local storage
if (cartridge.has_battery()) this.loadRam();
// in case the restore (state) flag is set
// then resumes the machine execution
if (restore) this.resume();
// triggers the booted event indicating that the
// emulator has finished the loading process
this.trigger("booted");
}
setRom(name: string, data: Uint8Array, cartridge: Cartridge) {
this.romName = name;
this.romData = data;
this.romSize = data.length;
this.cartridge = cartridge;
}
get name(): string {
return "Boytacean";
}
get device(): Entry {
return {
text: "Game Boy",
url: "https://en.wikipedia.org/wiki/Game_Boy"
};
get version(): Entry | undefined {
return {
text: info.version,
url: "https://github.com/joamag/boytacean/blob/master/CHANGELOG.md"
};
get repository(): Entry {
return {
text: "GitHub",
url: "https://github.com/joamag/boytacean"
};
return [
Feature.Debug,
Feature.Palettes,
Feature.Benchmark,
Feature.Keyboard,
Feature.KeyboardGB
];
get engines() {
return ["neo"];
}
get engine() {
return this._engine;
}
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
get romExts(): string[] {
return ["gb"];
}
get pixelFormat(): PixelFormat {
return PixelFormat.RGB;
}
/**
* Returns the array buffer that contains the complete set of
* pixel data that is going to be drawn.
*
* @returns The current pixel data for the emulator display.
*/
get imageBuffer(): Uint8Array {
return this.gameBoy?.frame_buffer_eager() ?? new Uint8Array();
}
get romInfo(): RomInfo {
return {
name: this.romName ?? undefined,
data: this.romData ?? undefined,
size: this.romSize,
extra: {
romType: this.cartridge?.rom_type_s(),
romSize: this.cartridge?.rom_size_s(),
ramSize: this.cartridge?.ram_size_s()
}
};
}
get frequency(): number {
return this.logicFrequency;
}
set frequency(value: number) {
value = Math.max(value, 0);
this.logicFrequency = value;
this.trigger("frequency", value);
}
get frequencyDelta(): number | null {
return 400000;
}
get framerate(): number {
return this.fps;
}
get registers(): Record<string, string | number> {
const registers = this.gameBoy?.registers();
if (!registers) return {};
return {
pc: registers.pc,
sp: registers.sp,
a: registers.a,
b: registers.b,
c: registers.c,
d: registers.d,
e: registers.e,
h: registers.h,
l: registers.l,
scy: registers.scy,
scx: registers.scx,
wy: registers.wy,
wx: registers.wx,
ly: registers.ly,
lyc: registers.lyc
};
}
getTile(index: number): Uint8Array {
return this.gameBoy?.get_tile_buffer(index) ?? new Uint8Array();
}
toggleRunning() {
if (this.paused) {
this.resume();
} else {
this.pause();
}
}
pause() {
this.paused = true;
}
resume() {
this.paused = false;
this.nextTickTime = new Date().getTime();
}
reset() {
this.boot({ engine: null });
}
keyPress(key: string) {
const keyCode = KEYS_NAME[key];
if (keyCode === undefined) return;
this.gameBoy?.key_press(keyCode);
}
keyLift(key: string) {
const keyCode = KEYS_NAME[key];
if (keyCode === undefined) return;
this.gameBoy?.key_lift(keyCode);
}
changePalette() {
this.paletteIndex += 1;
this.paletteIndex %= PALETTES.length;
}
benchmark(count = 50000000) {
let cycles = 0;
this.pause();
try {
const initial = Date.now();
for (let i = 0; i < count; i++) {
cycles += this.gameBoy?.clock() ?? 0;
}
const delta = (Date.now() - initial) / 1000;
const frequency_mhz = cycles / delta / 1000 / 1000;
return {
delta: delta,
count: count,
cycles: cycles,
frequency_mhz: frequency_mhz
};
} finally {
this.resume();
}
}
if (!this.gameBoy || !this.cartridge || !window.localStorage) return;
const ramDataB64 = localStorage.getItem(this.cartridge.title());
if (!ramDataB64) return;
const ramData = base64ToBuffer(ramDataB64);
this.gameBoy.set_ram_data(ramData);
}
private storeRam() {
if (!this.gameBoy || !this.cartridge || !window.localStorage) return;
const title = this.cartridge.title();
const ramData = this.gameBoy.ram_data_eager();
const ramDataB64 = bufferToBase64(ramData);
localStorage.setItem(title, ramDataB64);
}
private setPalette(index?: number) {
index ??= this.paletteIndex;
const palette = PALETTES[index];
this.gameBoy?.set_palette_colors_ws(palette.colors);
}
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
private async fetchRom(
romPath: string
): Promise<{ name: string; data: Uint8Array }> {
// extracts the name of the ROM from the provided
// path by splitting its structure
const romPathS = romPath.split(/\//g);
let romName = romPathS[romPathS.length - 1].split("?")[0];
const romNameS = romName.split(/\./g);
romName = `${romNameS[0]}.${romNameS[romNameS.length - 1]}`;
// loads the ROM data and converts it into the
// target byte array buffer (to be used by WASM)
const response = await fetch(romPath);
const blob = await response.blob();
const arrayBuffer = await blob.arrayBuffer();
const romData = new Uint8Array(arrayBuffer);
// returns both the name of the ROM and the data
// contents as a byte array
return {
name: romName,
data: romData
};
}
}
declare global {
interface Window {
panic: (message: string) => void;
}
}
window.panic = (message: string) => {
console.error(message);
};
const wasm = async () => {
await _wasm();
GameBoy.set_panic_hook_ws();
};