Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
use boytacean_common::error::Error;
use std::{
cmp::Ordering,
collections::BinaryHeap,
io::{Cursor, Read},
mem::size_of,
};
#[derive(Debug, Eq, PartialEq)]
struct Node {
frequency: u32,
character: Option<u8>,
left: Option<Box<Node>>,
right: Option<Box<Node>>,
}
impl Ord for Node {
fn cmp(&self, other: &Self) -> Ordering {
other.frequency.cmp(&self.frequency)
}
}
impl PartialOrd for Node {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
pub fn encode_huffman(data: &[u8]) -> Result<Vec<u8>, Error> {
let frequency_map = build_frequency(data);
let tree = build_tree(&frequency_map)
.ok_or(Error::CustomError(String::from("Failed to build tree")))?;
let mut codes = vec![Vec::new(); 256];
build_codes(&tree, Vec::new(), &mut codes);
let encoded_tree = encode_tree(&tree);
let encoded_data = encode_data(data, &codes);
let tree_length = encoded_tree.len() as u32;
let data_length = data.len() as u64;
let mut result = Vec::new();
result.extend(tree_length.to_be_bytes());
result.extend(encoded_tree);
result.extend(data_length.to_be_bytes());
result.extend(encoded_data);
Ok(result)
}
pub fn decode_huffman(data: &[u8]) -> Result<Vec<u8>, Error> {
let mut reader = Cursor::new(data);
let mut buffer = [0x00; size_of::<u32>()];
reader.read_exact(&mut buffer)?;
let tree_length = u32::from_be_bytes(buffer);
let mut buffer = vec![0; tree_length as usize];
reader.read_exact(&mut buffer)?;
let tree = decode_tree(&mut buffer.as_slice());
let mut buffer = [0x00; size_of::<u64>()];
reader.read_exact(&mut buffer)?;
let data_length = u64::from_be_bytes(buffer);
let mut buffer =
vec![0; data.len() - size_of::<u32>() - tree_length as usize - size_of::<u64>()];
reader.read_exact(&mut buffer)?;
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
let result = decode_data(&buffer, &tree, data_length);
Ok(result)
}
fn build_frequency(data: &[u8]) -> [u32; 256] {
let mut frequency_map = [0_u32; 256];
for &byte in data {
frequency_map[byte as usize] += 1;
}
frequency_map
}
fn build_tree(frequency_map: &[u32; 256]) -> Option<Box<Node>> {
let mut heap: BinaryHeap<Box<Node>> = BinaryHeap::new();
for (byte, &frequency) in frequency_map.iter().enumerate() {
if frequency == 0 {
continue;
}
heap.push(Box::new(Node {
frequency,
character: Some(byte as u8),
left: None,
right: None,
}));
}
while heap.len() > 1 {
let left = heap.pop().unwrap();
let right = heap.pop().unwrap();
let merged = Box::new(Node {
frequency: left.frequency + right.frequency,
character: None,
left: Some(left),
right: Some(right),
});
heap.push(merged);
}
heap.pop()
}
fn build_codes(node: &Node, prefix: Vec<u8>, codes: &mut [Vec<u8>]) {
if let Some(character) = node.character {
codes[character as usize] = prefix;
} else {
if let Some(ref left) = node.left {
let mut left_prefix = prefix.clone();
left_prefix.push(0);
build_codes(left, left_prefix, codes);
}
if let Some(ref right) = node.right {
let mut right_prefix = prefix;
right_prefix.push(1);
build_codes(right, right_prefix, codes);
}
}
}
fn encode_data(data: &[u8], codes: &[Vec<u8>]) -> Vec<u8> {
let mut bit_buffer = Vec::new();
let mut current_byte = 0u8;
let mut bit_count = 0;
for &byte in data {
let code = &codes[byte as usize];
for &bit in code {
current_byte <<= 1;
if bit == 1 {
current_byte |= 1;
}
bit_count += 1;
if bit_count == 8 {
bit_buffer.push(current_byte);
current_byte = 0;
bit_count = 0;
}
}
}
if bit_count > 0 {
current_byte <<= 8 - bit_count;
bit_buffer.push(current_byte);
}
bit_buffer
}
fn decode_data(encoded: &[u8], root: &Node, data_length: u64) -> Vec<u8> {
let mut decoded = Vec::new();
let mut current_node = root;
let mut bit_index = 0;
for &byte in encoded {
if decoded.len() as u64 == data_length {
break;
}
for bit_offset in (0..8).rev() {
let bit = (byte >> bit_offset) & 1;
current_node = if bit == 0 {
current_node.left.as_deref().unwrap()
} else {
current_node.right.as_deref().unwrap()
};
if let Some(character) = current_node.character {
decoded.push(character);
current_node = root;
}
if decoded.len() as u64 == data_length {
break;
}
bit_index += 1;
if bit_index == encoded.len() * 8 {
break;
}
}
}
decoded
}
fn encode_tree(node: &Node) -> Vec<u8> {
let mut result = Vec::new();
if let Some(character) = node.character {
result.push(1);
result.push(character);
} else {
result.push(0);
if let Some(ref left) = node.left {
result.extend(encode_tree(left));
}
if let Some(ref right) = node.right {
result.extend(encode_tree(right));
}
}
result
}
fn decode_tree(data: &mut &[u8]) -> Box<Node> {
let mut node = Box::new(Node {
frequency: 0,
character: None,
left: None,
right: None,
});
if data[0] == 1 {
node.character = Some(data[1]);
*data = &data[2..];
} else {
*data = &data[1..];
node.left = Some(decode_tree(data));
node.right = Some(decode_tree(data));
}
node
}
#[cfg(test)]
mod tests {
use super::{decode_huffman, encode_huffman};
#[test]
fn test_huffman_encoding() {
let data = b"this is an example for huffman encoding, huffman encoding, huffman encoding";
let encoded = encode_huffman(data).unwrap();
let decoded = decode_huffman(&encoded).unwrap();
assert_eq!(data.to_vec(), decoded);
assert_eq!(encoded.len(), 109);
assert_eq!(decoded.len(), 75);
}
}