Newer
Older
use std::collections::VecDeque;
const DUTY_TABLE: [[u8; 8]; 4] = [
[0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 1, 0],
];
const CH4_DIVISORS: [u8; 8] = [8, 16, 32, 48, 64, 80, 96, 112];
pub enum Channel {
Ch1,
Ch2,
Ch3,
Ch4,
}
ch1_envelope_sequence: u8,
ch1_envelope_enabled: bool,
ch1_sweep_slope: u8,
ch1_sweep_increase: bool,
ch1_sweep_pace: u8,
ch1_length_timer: u8,
ch1_wave_duty: u8,
ch1_pace: u8,
ch1_direction: u8,
ch1_volume: u8,
ch1_wave_length: u16,
ch2_envelope_sequence: u8,
ch2_envelope_enabled: bool,
ch2_length_timer: u8,
ch2_wave_duty: u8,
ch2_pace: u8,
ch2_direction: u8,
ch2_volume: u8,
ch2_wave_length: u16,
ch3_position: u8,
ch3_output: u8,
ch3_dac: bool,
ch3_length_timer: u8,
ch3_output_level: u8,
ch3_wave_length: u16,
ch4_envelope_sequence: u8,
ch4_envelope_enabled: bool,
ch4_output: u8,
ch4_length_timer: u8,
ch4_pace: u8,
ch4_direction: u8,
ch4_volume: u8,
ch4_divisor: u8,
ch4_width_mode: bool,
ch4_clock_shift: u8,
ch4_lfsr: u16,
ch4_length_stop: bool,
ch4_enabled: bool,
right_enabled: bool,
left_enabled: bool,
ch1_out_enabled: bool,
ch2_out_enabled: bool,
ch3_out_enabled: bool,
ch4_out_enabled: bool,
sequencer: u16,
sequencer_step: u8,
audio_buffer: VecDeque<u8>,
audio_buffer_max: usize,
pub fn new(sampling_rate: u16, buffer_size: f32, clock_freq: u32) -> Self {
ch1_timer: 0,
ch1_sequence: 0,
ch1_envelope_sequence: 0,
ch1_envelope_enabled: false,
ch1_sweep_slope: 0x0,
ch1_sweep_increase: false,
ch1_sweep_pace: 0x0,
ch1_length_timer: 0x0,
ch1_wave_duty: 0x0,
ch1_pace: 0x0,
ch1_direction: 0x0,
ch1_volume: 0x0,
ch1_wave_length: 0x0,
ch2_timer: 0,
ch2_sequence: 0,
ch2_envelope_sequence: 0,
ch2_envelope_enabled: false,
ch2_length_timer: 0x0,
ch2_wave_duty: 0x0,
ch2_pace: 0x0,
ch2_direction: 0x0,
ch2_volume: 0x0,
ch2_wave_length: 0x0,
ch3_timer: 0,
ch3_position: 0,
ch3_output: 0,
ch3_dac: false,
ch3_length_timer: 0x0,
ch3_output_level: 0x0,
ch3_wave_length: 0x0,
ch4_envelope_sequence: 0,
ch4_envelope_enabled: false,
ch4_output: 0,
ch4_length_timer: 0x0,
ch4_pace: 0x0,
ch4_direction: 0x0,
ch4_volume: 0x0,
ch4_divisor: 0x0,
ch4_width_mode: false,
ch4_clock_shift: 0x0,
ch4_lfsr: 0x0,
ch4_length_stop: false,
ch4_enabled: false,
left_enabled: true,
right_enabled: true,
ch1_out_enabled: true,
ch2_out_enabled: true,
/// The RAM that is used to sore the wave information
/// to be used in channel 3 audio
/// The rate at which audio samples are going to be
/// taken, ideally this value should be aligned with
/// the sampling rate of the output device. A typical
/// sampling rate would be of 44.1kHz.
/// Internal sequencer counter that runs at 512Hz
/// used for the activation of the tick actions.
sequencer: 0,
sequencer_step: 0,
(sampling_rate as f32 * buffer_size) as usize * 2,
audio_buffer_max: (sampling_rate as f32 * buffer_size) as usize * 2,
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
pub fn reset(&mut self) {
self.ch1_timer = 0;
self.ch1_sequence = 0;
self.ch1_envelope_sequence = 0;
self.ch1_envelope_enabled = false;
self.ch1_sweep_sequence = 0;
self.ch1_output = 0;
self.ch1_sweep_slope = 0x0;
self.ch1_sweep_increase = false;
self.ch1_sweep_pace = 0x0;
self.ch1_length_timer = 0x0;
self.ch1_wave_duty = 0x0;
self.ch1_pace = 0x0;
self.ch1_direction = 0x0;
self.ch1_volume = 0x0;
self.ch1_wave_length = 0x0;
self.ch1_length_stop = false;
self.ch1_enabled = false;
self.ch2_timer = 0;
self.ch2_sequence = 0;
self.ch2_envelope_sequence = 0;
self.ch2_envelope_enabled = false;
self.ch2_output = 0;
self.ch2_length_timer = 0x0;
self.ch2_wave_duty = 0x0;
self.ch2_pace = 0x0;
self.ch2_direction = 0x0;
self.ch2_volume = 0x0;
self.ch2_wave_length = 0x0;
self.ch2_length_stop = false;
self.ch2_enabled = false;
self.ch3_timer = 0;
self.ch3_position = 0;
self.ch3_output = 0;
self.ch3_dac = false;
self.ch3_length_timer = 0x0;
self.ch3_output_level = 0x0;
self.ch3_wave_length = 0x0;
self.ch3_length_stop = false;
self.ch3_enabled = false;
self.ch4_envelope_sequence = 0;
self.ch4_envelope_enabled = false;
self.ch4_output = 0;
self.ch4_length_timer = 0x0;
self.ch4_pace = 0x0;
self.ch4_direction = 0x0;
self.ch4_volume = 0x0;
self.ch4_divisor = 0x0;
self.ch4_width_mode = false;
self.ch4_clock_shift = 0x0;
self.ch4_lfsr = 0x0;
self.ch4_length_stop = false;
self.ch4_enabled = false;
self.left_enabled = true;
self.right_enabled = true;
self.sequencer = 0;
self.sequencer_step = 0;
self.output_timer = 0;
self.clear_audio_buffer()
}
pub fn clock(&mut self, cycles: u8) {
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
self.sequencer += cycles as u16;
if self.sequencer >= 8192 {
// each of these steps runs at 512/8 Hz = 64Hz,
// meaning a complete loop runs at 512 Hz
match self.sequencer_step {
0 => {
self.tick_length_all();
}
1 => (),
2 => {
self.tick_ch1_sweep();
self.tick_length_all();
}
3 => (),
4 => {
self.tick_length_all();
}
5 => (),
6 => {
self.tick_ch1_sweep();
self.tick_length_all();
}
7 => {
self.tick_envelope_all();
}
_ => (),
}
self.sequencer -= 8192;
self.sequencer_step = (self.sequencer_step + 1) & 7;
}
self.tick_ch_all(cycles);
self.output_timer = self.output_timer.saturating_sub(cycles as i16);
if self.output_timer <= 0 {
// verifies if we've reached the maximum allowed size for the
// audio buffer and if that's the case an item is removed from
// the buffer (avoiding overflow) and then then the new audio
// volume item is added to the queue
if self.audio_buffer.len() >= self.audio_buffer_max {
self.audio_buffer.pop_front();
self.audio_buffer.pop_front();
}
if self.left_enabled {
self.audio_buffer.push_back(self.output());
}
if self.right_enabled {
self.audio_buffer.push_back(self.output());
}
// @TODO the CPU clock is hardcoded here, we must handle situations
// where there's some kind of overclock, and for that to happen the
// current CPU clock must be propagated here
self.output_timer += (self.clock_freq as f32 / self.sampling_rate as f32) as i16;
pub fn read(&mut self, addr: u16) -> u8 {
match addr {
// 0xFF25 — NR51: Sound panning
0xff25 => self.glob_panning,
_ => {
warnln!("Reading from unknown APU location 0x{:04x}", addr);
0xff
}
}
}
pub fn write(&mut self, addr: u16, value: u8) {
match addr {
self.ch1_sweep_slope = value & 0x07;
self.ch1_sweep_increase = value & 0x08 == 0x00;
self.ch1_sweep_pace = (value & 0x70) >> 4;
}
// 0xFF11 — NR11: Channel 1 length timer & duty cycle
0xff11 => {
self.ch1_length_timer = value & 0x3f;
self.ch1_wave_duty = (value & 0xc0) >> 6;
}
// 0xFF12 — NR12: Channel 1 volume & envelope
0xff12 => {
self.ch1_pace = value & 0x07;
self.ch1_direction = (value & 0x08) >> 3;
self.ch1_volume = (value & 0xf0) >> 4;
self.ch1_envelope_enabled = self.ch1_pace > 0;
self.ch1_envelope_sequence = 0;
}
// 0xFF13 — NR13: Channel 1 wavelength low
0xff13 => {
self.ch1_wave_length = (self.ch1_wave_length & 0xff00) | value as u16;
}
// 0xFF14 — NR14: Channel 1 wavelength high & control
0xff14 => {
let length_trigger = value & 0x40 == 0x40;
let trigger = value & 0x80 == 0x80;
self.ch1_wave_length =
(self.ch1_wave_length & 0x00ff) | (((value & 0x07) as u16) << 8);
self.ch1_length_stop = value & 0x40 == 0x40;
self.ch1_enabled |= value & 0x80 == 0x80;
if (length_trigger || trigger) && self.ch1_length_timer == 0 {
self.ch1_length_timer = 0;
}
}
// 0xFF16 — NR21: Channel 2 length timer & duty cycle
0xff16 => {
self.ch2_length_timer = value & 0x3f;
self.ch2_wave_duty = (value & 0xc0) >> 6;
}
// 0xFF17 — NR22: Channel 2 volume & envelope
0xff17 => {
self.ch2_pace = value & 0x07;
self.ch2_direction = (value & 0x08) >> 3;
self.ch2_volume = (value & 0xf0) >> 4;
}
// 0xFF18 — NR23: Channel 2 wavelength low
0xff18 => {
self.ch2_wave_length = (self.ch2_wave_length & 0xff00) | value as u16;
}
// 0xFF19 — NR24: Channel 2 wavelength high & control
let length_trigger = value & 0x40 == 0x40;
let trigger = value & 0x80 == 0x80;
self.ch2_wave_length =
(self.ch2_wave_length & 0x00ff) | (((value & 0x07) as u16) << 8);
self.ch2_length_stop = length_trigger;
self.ch2_enabled |= trigger;
if trigger {
if (length_trigger || trigger) && self.ch2_length_timer == 0 {
self.ch2_length_timer = 0;
}
// 0xFF1A — NR30: Channel 3 DAC enable
0xff1a => {
self.ch3_dac = value & 0x80 == 0x80;
}
// 0xFF1B — NR31: Channel 3 length timer
0xff1b => {
self.ch3_length_timer = value;
}
// 0xFF1C — NR32: Channel 3 output level
0xff1c => {
self.ch3_output_level = (value & 0x60) >> 5;
}
// 0xFF1D — NR33: Channel 3 wavelength low [write-only]
0xff1d => {
self.ch3_wave_length = (self.ch3_wave_length & 0xff00) | value as u16;
}
// 0xFF1E — NR34: Channel 3 wavelength high & control
0xff1e => {
let length_trigger = value & 0x40 == 0x40;
let trigger = value & 0x80 == 0x80;
self.ch3_wave_length =
(self.ch3_wave_length & 0x00ff) | (((value & 0x07) as u16) << 8);
self.ch3_length_stop = length_trigger;
self.ch3_enabled |= trigger;
if trigger {
if (length_trigger || trigger) && self.ch3_length_timer == 0 {
self.ch3_length_timer = 0;
}
// 0xFF20 — NR41: Channel 4 length timer
0xff20 => {
self.ch4_length_timer = value & 0x3f;
}
// 0xFF21 — NR42: Channel 4 volume & envelope
0xff21 => {
self.ch4_pace = value & 0x07;
self.ch4_direction = (value & 0x08) >> 3;
self.ch4_volume = (value & 0xf0) >> 4;
self.ch4_envelope_enabled = self.ch4_pace > 0;
self.ch4_envelope_sequence = 0;
}
// 0xFF22 — NR43: Channel 4 frequency & randomness
0xff22 => {
self.ch4_divisor = value & 0x07;
self.ch4_width_mode = value & 0x08 == 0x08;
self.ch4_clock_shift = (value & 0xf0) >> 4;
}
// 0xFF23 — NR44: Channel 4 control
0xff23 => {
let length_trigger = value & 0x40 == 0x40;
let trigger = value & 0x80 == 0x80;
self.ch4_length_stop = length_trigger;
self.ch4_enabled |= trigger;
if trigger {
if (length_trigger || trigger) && self.ch4_length_timer == 0 {
self.ch4_length_timer = 0;
}
// 0xFF24 — NR50: Master volume & VIN panning
0xff24 => {
//@TODO: Implement master volume & VIN panning
}
// 0xFF25 — NR51: Sound panning
0xff25 => {
}
// 0xFF26 — NR52: Sound on/off
0xff26 => {
//@TODO: Implement sound on/off
}
// 0xFF30-0xFF3F — Wave pattern RAM
0xff30..=0xff3f => {
self.wave_ram[addr as usize & 0x000f] = value;
_ => warnln!("Writing in unknown APU location 0x{:04x}", addr),
pub fn output(&self) -> u8 {
self.ch1_output() + self.ch2_output() + self.ch3_output() + self.ch4_output()
if self.ch1_out_enabled {
self.ch1_output
} else {
0
}
if self.ch2_out_enabled {
self.ch2_output
} else {
0
}
if self.ch3_out_enabled {
self.ch3_output
} else {
0
}
pub fn ch4_output(&self) -> u8 {
if self.ch4_out_enabled {
self.ch4_output
} else {
0
}
pub fn set_ch1_enabled(&mut self, enabled: bool) {
self.ch1_out_enabled = enabled;
}
pub fn set_ch2_enabled(&mut self, enabled: bool) {
self.ch2_out_enabled = enabled;
}
pub fn set_ch3_enabled(&mut self, enabled: bool) {
self.ch3_out_enabled = enabled;
}
pub fn set_ch4_enabled(&mut self, enabled: bool) {
self.ch4_out_enabled = enabled;
}
pub fn audio_buffer(&self) -> &VecDeque<u8> {
&self.audio_buffer
}
pub fn audio_buffer_mut(&mut self) -> &mut VecDeque<u8> {
&mut self.audio_buffer
}
pub fn clear_audio_buffer(&mut self) {
self.audio_buffer.clear();
}
pub fn clock_freq(&self) -> u32 {
self.clock_freq
}
pub fn set_clock_freq(&mut self, value: u32) {
self.clock_freq = value;
}
fn tick_length_all(&mut self) {
self.tick_length(Channel::Ch1);
self.tick_length(Channel::Ch2);
self.tick_length(Channel::Ch3);
self.tick_length(Channel::Ch4);
fn tick_length(&mut self, channel: Channel) {
match channel {
Channel::Ch1 => {
if !self.ch1_enabled {
return;
}
self.ch1_length_timer = self.ch1_length_timer.saturating_add(1);
if self.ch1_length_timer >= 64 {
self.ch1_enabled = !self.ch1_length_stop;
self.ch1_length_timer = 0;
}
}
Channel::Ch2 => {
self.ch2_length_timer = self.ch2_length_timer.saturating_add(1);
if self.ch2_length_timer >= 64 {
self.ch2_enabled = !self.ch2_length_stop;
self.ch2_length_timer = 0;
}
}
Channel::Ch3 => {
self.ch3_length_timer = self.ch3_length_timer.saturating_add(1);
if self.ch3_length_timer >= 64 {
self.ch3_enabled = !self.ch3_length_stop;
self.ch3_length_timer = 0;
}
}
Channel::Ch4 => {
self.ch4_length_timer = self.ch4_length_timer.saturating_add(1);
if self.ch4_length_timer >= 64 {
self.ch4_enabled = !self.ch4_length_stop;
self.ch4_length_timer = 0;
}
}
fn tick_envelope_all(&mut self) {
self.tick_envelope(Channel::Ch1);
self.tick_envelope(Channel::Ch2);
self.tick_envelope(Channel::Ch4);
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
fn tick_envelope(&mut self, channel: Channel) {
match channel {
Channel::Ch1 => {
if !self.ch1_enabled || !self.ch1_envelope_enabled {
return;
}
self.ch1_envelope_sequence += 1;
if self.ch1_envelope_sequence >= self.ch1_pace {
if self.ch1_direction == 0x01 {
self.ch1_volume = self.ch1_volume.saturating_add(1);
} else {
self.ch1_volume = self.ch1_volume.saturating_sub(1);
}
if self.ch1_volume == 0 || self.ch1_volume == 15 {
self.ch1_envelope_enabled = false;
}
self.ch1_envelope_sequence = 0;
}
}
Channel::Ch2 => {
if !self.ch2_enabled || !self.ch2_envelope_enabled {
return;
}
self.ch2_envelope_sequence += 1;
if self.ch2_envelope_sequence >= self.ch2_pace {
if self.ch2_direction == 0x01 {
self.ch2_volume = self.ch2_volume.saturating_add(1);
} else {
self.ch2_volume = self.ch2_volume.saturating_sub(1);
}
if self.ch2_volume == 0 || self.ch2_volume == 15 {
self.ch2_envelope_enabled = false;
}
self.ch2_envelope_sequence = 0;
}
}
Channel::Ch3 => (),
Channel::Ch4 => {
if !self.ch4_enabled || !self.ch4_envelope_enabled {
return;
}
self.ch4_envelope_sequence += 1;
if self.ch4_envelope_sequence >= self.ch4_pace {
if self.ch4_direction == 0x01 {
self.ch4_volume = self.ch4_volume.saturating_add(1);
} else {
self.ch4_volume = self.ch4_volume.saturating_sub(1);
}
if self.ch4_volume == 0 || self.ch4_volume == 15 {
self.ch4_envelope_enabled = false;
}
self.ch4_envelope_sequence = 0;
}
}
fn tick_ch1_sweep(&mut self) {
if self.ch1_sweep_pace == 0x0 {
return;
}
self.ch1_sweep_sequence += 1;
if self.ch1_sweep_sequence >= self.ch1_sweep_pace {
let divisor = 1u16 << self.ch1_sweep_slope as u16;
let delta = (self.ch1_wave_length as f32 / divisor as f32) as u16;
if self.ch1_sweep_increase {
self.ch1_wave_length = self.ch1_wave_length.saturating_add(delta);
} else {
self.ch1_wave_length = self.ch1_wave_length.saturating_sub(delta);
}
if self.ch1_wave_length > 0x07ff {
self.ch1_enabled = false;
self.ch1_wave_length = 0x07ff;
}
self.ch1_sweep_sequence = 0;
}
fn tick_ch_all(&mut self, cycles: u8) {
self.tick_ch1(cycles);
self.tick_ch2(cycles);
self.tick_ch3(cycles);
fn tick_ch1(&mut self, cycles: u8) {
self.ch1_timer = self.ch1_timer.saturating_sub(cycles as i16);
if self.ch1_timer > 0 {
return;
}
if self.ch1_enabled {
self.ch1_output =
if DUTY_TABLE[self.ch1_wave_duty as usize][self.ch1_sequence as usize] == 1 {
self.ch1_volume
} else {
0
};
} else {
self.ch1_output = 0;
}
self.ch1_timer += ((2048 - self.ch1_wave_length) << 2) as i16;
self.ch1_sequence = (self.ch1_sequence + 1) & 7;
}
fn tick_ch2(&mut self, cycles: u8) {
self.ch2_timer = self.ch2_timer.saturating_sub(cycles as i16);
if self.ch2_timer > 0 {
return;
}
if self.ch2_enabled {
self.ch2_output =
if DUTY_TABLE[self.ch2_wave_duty as usize][self.ch2_sequence as usize] == 1 {
self.ch2_volume
} else {
0
};
} else {
self.ch2_output = 0;
}
self.ch2_timer += ((2048 - self.ch2_wave_length) << 2) as i16;
self.ch2_sequence = (self.ch2_sequence + 1) & 7;
}
fn tick_ch3(&mut self, cycles: u8) {
self.ch3_timer = self.ch3_timer.saturating_sub(cycles as i16);
if self.ch3_timer > 0 {
return;
}
if self.ch3_enabled && self.ch3_dac {
let wave_index = self.ch3_position >> 1;
let mut output = self.wave_ram[wave_index as usize];
output = if (self.ch3_position & 0x01) == 0x01 {
output & 0x0f
} else {
(output & 0xf0) >> 4
};
if self.ch3_output_level > 0 {
output >>= self.ch3_output_level - 1;
} else {
output = 0;
}
self.ch3_output = output;
} else {
self.ch3_output = 0;
}
self.ch3_timer += ((2048 - self.ch3_wave_length) << 1) as i16;
self.ch3_position = (self.ch3_position + 1) & 31;
}
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
#[inline(always)]
fn tick_ch4(&mut self, cycles: u8) {
self.ch4_timer = self.ch4_timer.saturating_sub(cycles as i16);
if self.ch4_timer > 0 {
return;
}
if self.ch4_enabled {
// obtains the current value of the LFSR based as
// the XOR of the 1st and 2nd bit of the LFSR
let result = ((self.ch4_lfsr & 0x0001) ^ ((self.ch4_lfsr >> 1) & 0x0001)) == 0x0001;
// shifts the LFSR to the right and in case the
// value is positive sets the 15th bit to 1
self.ch4_lfsr >>= 1;
self.ch4_lfsr |= if result { 0x0001 << 14 } else { 0x0 };
// in case the short width mode (7 bits) is set then
// the 6th bit will be set to value of the 15th bit
if self.ch4_width_mode {
self.ch4_lfsr &= 0xbf;
self.ch4_lfsr |= if result { 0x40 } else { 0x00 };
}
self.ch4_output = if result { self.ch4_volume } else { 0 };
} else {
self.ch4_output = 0;
}
self.ch4_timer +=
((CH4_DIVISORS[self.ch4_divisor as usize] as u16) << self.ch4_clock_shift) as i16;
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
#[inline(always)]
fn trigger_ch1(&mut self) {
self.ch1_timer = ((2048 - self.ch1_wave_length) << 2) as i16;
self.ch1_envelope_sequence = 0;
self.ch1_sweep_sequence = 0;
}
#[inline(always)]
fn trigger_ch2(&mut self) {
self.ch2_timer = ((2048 - self.ch2_wave_length) << 2) as i16;
self.ch2_envelope_sequence = 0;
}
#[inline(always)]
fn trigger_ch3(&mut self) {
self.ch3_timer = 3;
self.ch3_position = 0;
}
#[inline(always)]
fn trigger_ch4(&mut self) {
self.ch4_timer =
((CH4_DIVISORS[self.ch4_divisor as usize] as u16) << self.ch4_clock_shift) as i16;
self.ch4_lfsr = 0x7ff1;
self.ch4_envelope_sequence = 0;
}
impl Default for Apu {
fn default() -> Self {