Newer
Older
pub const DISPLAY_WIDTH: usize = 64;
pub const DISPLAY_HEIGHT: usize = 32;
pub const RAM_SIZE: usize = 4096;
pub const STACK_SIZE: usize = 16;
pub const REGISTERS_SIZE: usize = 16;
/// The starting address for the ROM loading, should be
const ROM_START: usize = 0x200;
static FONT_SET: [u8; 80] = [
0xf0, 0x90, 0x90, 0x90, 0xf0, // 0
0x20, 0x60, 0x20, 0x20, 0x70, // 1
0xf0, 0x10, 0xf0, 0x80, 0xf0, // 2
0xf0, 0x10, 0xf0, 0x10, 0xf0, // 3
0x90, 0x90, 0xf0, 0x10, 0x10, // 4
0xf0, 0x80, 0xf0, 0x10, 0xf0, // 5
0xf0, 0x80, 0xf0, 0x90, 0xf0, // 6
0xf0, 0x10, 0x20, 0x40, 0x40, // 7
0xf0, 0x90, 0xf0, 0x90, 0xf0, // 8
0xf0, 0x90, 0xf0, 0x10, 0xf0, // 9
0xf0, 0x90, 0xf0, 0x90, 0x90, // A
0xe0, 0x90, 0xe0, 0x90, 0xe0, // B
0xf0, 0x80, 0x80, 0x80, 0xf0, // C
0xe0, 0x90, 0x90, 0x90, 0xe0, // D
0xf0, 0x80, 0xf0, 0x80, 0xf0, // E
0xf0, 0x80, 0xf0, 0x80, 0x80, // F
];
ram: [u8; RAM_SIZE],
vram: [u8; DISPLAY_WIDTH * DISPLAY_HEIGHT],
pc: u16,
i: u16,
sp: u8,
dt: u8,
st: u8,
#[cfg_attr(feature = "web", wasm_bindgen)]
impl Chip8Neo {
#[cfg_attr(feature = "web", wasm_bindgen(constructor))]
pub fn new() -> Chip8Neo {
ram: [0u8; RAM_SIZE],
vram: [0u8; DISPLAY_WIDTH * DISPLAY_HEIGHT],
stack: [0u16; STACK_SIZE],
pc: ROM_START as u16,
i: 0x0,
sp: 0x0,
dt: 0x0,
st: 0x0,
pub fn reset(&mut self) {
self.vram = [0u8; DISPLAY_WIDTH * DISPLAY_HEIGHT];
self.stack = [0u16; STACK_SIZE];
self.pc = ROM_START as u16;
self.i = 0x0;
self.sp = 0x0;
self.dt = 0x0;
self.st = 0x0;
self.load_default_font();
}
pub fn reset_hard(&mut self) {
self.ram = [0u8; RAM_SIZE];
self.reset();
}
pub fn pixels(&self) -> Vec<u8> {
self.vram.to_vec()
}
pub fn clock(&mut self) {
// fetches the current instruction and increments
// the PC (program counter) accordingly
let instruction =
(self.ram[self.pc as usize] as u16) << 8 | self.ram[self.pc as usize + 1] as u16;
let opcode = instruction & 0xf000;
let address = instruction & 0x0fff;
let x = ((instruction & 0x0f00) >> 8) as usize;
let y = ((instruction & 0x00f0) >> 4) as usize;
let nibble = (instruction & 0x000f) as u8;
let byte = (instruction & 0x00ff) as u8;
match opcode {
0x0000 => match byte {
0xe0 => self.clear_screen(),
0xee => {
self.sp -= 1;
self.pc = self.stack[self.sp as usize];
}
_ => println!("unimplemented instruction "),
},
0x1000 => self.pc = address,
0x2000 => {
self.stack[self.sp as usize] = self.pc;
self.sp += 1;
self.pc = address;
}
0x3000 => self.pc += if self.regs[x] == byte { 2 } else { 0 },
0x4000 => self.pc += if self.regs[x] != byte { 2 } else { 0 },
0x5000 => self.pc += if self.regs[x] == self.regs[y] { 2 } else { 0 },
0x6000 => self.regs[x] = byte,
0x7000 => self.regs[x] = self.regs[x].wrapping_add(byte),
0x0 => self.regs[x] = self.regs[y],
0x1 => self.regs[x] |= self.regs[y],
0x2 => self.regs[x] &= self.regs[y],
0x3 => self.regs[x] ^= self.regs[y],
0x4 => {
let (result, overflow) = self.regs[x].overflowing_add(self.regs[y]);
self.regs[x] = result;
self.regs[0xf] = overflow as u8;
}
0x5 => {
self.regs[0xf] = (self.regs[x] >= self.regs[y]) as u8;
self.regs[x] = self.regs[x].saturating_sub(self.regs[y]);
}
0x6 => {
self.regs[0xf] = self.regs[x] & 0x01;
self.regs[x] >>= 1;
}
0x7 => {
self.regs[0xf] = (self.regs[y] >= self.regs[x]) as u8;
self.regs[x] = self.regs[y].saturating_sub(self.regs[x]);
}
0xe => {
self.regs[0xf] = (self.regs[x] & 0x80) >> 7;
self.regs[x] <<= 1;
}
_ => println!("unimplemented instruction"),
},
0x9000 => self.pc += if self.regs[x] != self.regs[y] { 2 } else { 0 },
0xb000 => self.pc = address + self.regs[0x0] as u16,
self.regs[x] as usize,
self.regs[y] as usize,
0xe000 => match byte {
0x9e => self.pc += if self.keys[x] { 2 } else { 0 },
0xa1 => self.pc += if !self.keys[x] { 2 } else { 0 },
_ => println!(
"unimplemented instruction 0xe000, instruction 0x{:04x}",
instruction
),
},
0xf000 => match byte {
0x07 => self.regs[x] = self.dt,
0x0a => {
if self.keys[self.last_key as usize] {
self.regs[x] = self.last_key;
} else {
self.pc -= 2
}
}
0x15 => self.dt = self.regs[x],
0x18 => self.st = self.regs[x],
0x1e => self.i = self.i.saturating_add(self.regs[x] as u16),
0x33 => {
self.ram[self.i as usize] = self.regs[x] / 100;
self.ram[self.i as usize + 1] = (self.regs[x] / 10) % 10;
self.ram[self.i as usize + 2] = self.regs[x] % 10;
}
0x55 => self.ram[self.i as usize..self.i as usize + x + 1]
.clone_from_slice(&self.regs[0..x + 1]),
0x65 => self.regs[0..x + 1]
.clone_from_slice(&self.ram[self.i as usize..self.i as usize + x + 1]),
_ => println!(
"unimplemented instruction 0xf000, instruction 0x{:04x}",
instruction
),
},
"unimplemented opcode 0x{:04x}, instruction 0x{:04x}",
pub fn clock_dt(&mut self) {
self.dt = self.dt.saturating_sub(1)
}
pub fn clock_st(&mut self) {
self.st = self.st.saturating_sub(1)
}
pub fn load_rom(&mut self, rom: &[u8]) {
self.ram[ROM_START..ROM_START + rom.len()].clone_from_slice(&rom);
}
}
pub fn pc(&self) -> u16 {
self.pc
}
pub fn sp(&self) -> u8 {
self.sp
}
fn load_font(&mut self, position: usize, font_set: &[u8]) {
self.ram[position..position + font_set.len()].clone_from_slice(&font_set);
}
fn load_default_font(&mut self) {
self.load_font(0, &FONT_SET);
}
fn clear_screen(&mut self) {
self.vram = [0u8; DISPLAY_WIDTH * DISPLAY_HEIGHT];
}
fn draw_sprite(&mut self, x0: usize, y0: usize, height: usize) {
for y in 0..height {
let line_byte = self.ram[(self.i as usize + y)];
for x in 0..8 {
let yf = (y0 + y) % DISPLAY_HEIGHT;
let xf = (x0 + x) % DISPLAY_WIDTH;
if line_byte & (0x80 >> x) == 0 {
continue;
}
let addr = yf * DISPLAY_WIDTH + xf;
if self.vram[addr] == 1 {
}
self.vram[addr] ^= 1
}
}
}