Newer
Older
use std::{cell::RefCell, rc::Rc};
use crate::{
apu::Apu, debugln, gb::GameBoyConfig, pad::Pad, ppu::Ppu, rom::Cartridge, serial::Serial,
timer::Timer,
};
pub const BOOT_SIZE_DMG: usize = 256;
pub const BOOT_SIZE_CGB: usize = 2304;
pub const RAM_SIZE_DMG: usize = 8192;
pub const RAM_SIZE_CGB: usize = 32768;
/// Register that controls the interrupts that are considered
/// to be enabled and should be triggered.
pub ie: u8,
/// Reference to the PPU (Pixel Processing Unit) that is going
/// to be used both for VRAM reading/writing and to forward
/// some of the access operations.
/// Reference to the APU (Audio Processing Unit) that is going
/// to be used both for register reading/writing and to forward
/// some of the access operations.
apu: Apu,
/// Reference to the Gamepad structure that is going to control
/// The timer controller to be used as part of the I/O access
/// that is memory mapped.
/// The serial data transfer controller to be used to control the
/// link cable connection, this component is memory mapped.
serial: Serial,
/// The cartridge ROM that is currently loaded into the system,
/// going to be used to access ROM and external RAM banks.
rom: Cartridge,
/// Flag that control the access to the boot section in the
/// 0x0000-0x00FE memory area, this flag should be unset after
/// the boot sequence has been finished.
/// Buffer to be used to store the boot ROM, this is the code
/// that is going to be executed at the beginning of the Game
/// Boy execution. The buffer effectively used is of 256 bytes
/// for the "normal" Game Boy (MGB) and 2308 bytes for the
/// Game Boy Color (CGB). Note that in the case of the CGB
/// the bios which is 2308 bytes long is in fact only 2048 bytes
/// as the 256 bytes in range 0x100-0x1FF are meant to be
/// overwritten byte the cartridge header.
boot: Vec<u8>,
ram: Vec<u8>,
/// The RAM bank to be used in the read and write operation of
/// the 0xD000-0xDFFF memory range (CGB Only).
ram_bank: u8,
ram_offset: u16,
pub fn new(
ppu: Ppu,
apu: Apu,
pad: Pad,
timer: Timer,
serial: Serial,
gbc: Rc<RefCell<GameBoyConfig>>,
) -> Self {
boot: vec![],
ram: vec![],
ram_bank: 0x1,
ram_offset: 0x1000,
self.boot = vec![];
self.ram = vec![];
self.ram_bank = 0x1;
self.ram_offset = 0x1000;
pub fn allocate_default(&mut self) {
self.allocate_dmg();
}
pub fn allocate_dmg(&mut self) {
self.boot = vec![0x00; BOOT_SIZE_DMG];
self.ram = vec![0x00; RAM_SIZE_DMG];
}
pub fn allocate_cgb(&mut self) {
self.boot = vec![0x00; BOOT_SIZE_CGB];
self.ram = vec![0x00; RAM_SIZE_CGB];
}
pub fn ppu(&mut self) -> &mut Ppu {
&mut self.ppu
pub fn apu(&mut self) -> &mut Apu {
&mut self.apu
}
pub fn apu_i(&self) -> &Apu {
&self.apu
}
pub fn pad(&mut self) -> &mut Pad {
&mut self.pad
}
pub fn timer(&mut self) -> &mut Timer {
&mut self.timer
}
pub fn serial(&mut self) -> &mut Serial {
&mut self.serial
}
pub fn boot_active(&self) -> bool {
self.boot_active
}
pub fn set_boot_active(&mut self, value: bool) {
self.boot_active = value;
}
pub fn read(&mut self, addr: u16) -> u8 {
// in case the boot mode is active and the
// address is withing boot memory reads from it
if self.boot_active && addr <= 0x00fe {
// if we're reading from this location we can
// safely assume that we're exiting the boot
// loading sequence and disable boot
if addr == 0x00fe {
self.boot_active = false;
}
return self.boot[addr as usize];
0x1000 | 0x2000 | 0x3000 => self.rom.read(addr),
0x4000 | 0x5000 | 0x6000 | 0x7000 => self.rom.read(addr),
0x8000 | 0x9000 => self.ppu.read(addr),
// Working RAM 0 (4 KB)
0xc000 => self.ram[(addr & 0x0fff) as usize],
// Working RAM 1 (Banked) (4KB)
0xd000 => self.ram[(self.ram_offset + (addr & 0x0fff)) as usize],
0xe000 => self.ram[(addr & 0x1fff) as usize],
// Working RAM Shadow, I/O, Zero-page RAM
0xf000 => match addr & 0x0f00 {
0x000 | 0x100 | 0x200 | 0x300 | 0x400 | 0x500 | 0x600 | 0x700 | 0x800 | 0x900
| 0xa00 | 0xb00 | 0xc00 | 0xd00 => self.ram[(addr & 0x1fff) as usize],
0xe00 => self.ppu.read(addr),
// 0xFF01-0xFF02 - Serial data transfer
0x01..=0x02 => self.serial.read(addr),
0x0f =>
{
#[allow(clippy::bool_to_int_with_if)]
(if self.ppu.int_vblank() { 0x01 } else { 0x00 }
| if self.ppu.int_stat() { 0x02 } else { 0x00 }
| if self.timer.int_tima() { 0x04 } else { 0x00 }
| if self.serial.int_serial() { 0x08 } else { 0x00 }
| if self.pad.int_pad() { 0x10 } else { 0x00 })
0x80..=0xfe => self.ppu.read(addr),
_ => match addr & 0x00f0 {
0x00 => match addr & 0x00ff {
0x00 => self.pad.read(addr),
0x04..=0x07 => self.timer.read(addr),
debugln!("Reading from unknown IO control 0x{:04x}", addr);
0x10..=0x26 | 0x30..=0x37 => self.apu.read(addr),
0x40 | 0x50 | 0x60 | 0x70 => self.ppu.read(addr),
_ => {
debugln!("Reading from unknown IO control 0x{:04x}", addr);
addr => panic!("Reading from unknown location 0x{:04x}", addr),
},
addr => panic!("Reading from unknown location 0x{:04x}", addr),
}
}
pub fn write(&mut self, addr: u16, value: u8) {
0x1000 | 0x2000 | 0x3000 => self.rom.write(addr, value),
0x4000 | 0x5000 | 0x6000 | 0x7000 => self.rom.write(addr, value),
0x8000 | 0x9000 => self.ppu.write(addr, value),
0xa000 | 0xb000 => self.rom.write(addr, value),
0xc000 | 0xd000 => self.ram[(addr & 0x1fff) as usize] = value,
0xe000 => self.ram[(addr & 0x1fff) as usize] = value,
// Working RAM Shadow, I/O, Zero-page RAM
0xf000 => match addr & 0x0f00 {
0x000 | 0x100 | 0x200 | 0x300 | 0x400 | 0x500 | 0x600 | 0x700 | 0x800 | 0x900
| 0xa00 | 0xb00 | 0xc00 | 0xd00 => {
self.ram[(addr & 0x1fff) as usize] = value;
}
0xe00 => self.ppu.write(addr, value),
// 0xFF01-0xFF02 - Serial data transfer
0x01..=0x02 => self.serial.write(addr, value),
0x0f => {
self.ppu.set_int_vblank(value & 0x01 == 0x01);
self.ppu.set_int_stat(value & 0x02 == 0x02);
self.timer.set_int_tima(value & 0x04 == 0x04);
self.serial.set_int_serial(value & 0x08 == 0x08);
// 0xFF50 - Boot active flag
0x50 => self.boot_active = false,
// 0xFF70 - SVBK: WRAM bank (CGB Mode only)
0x70 => {
let mut ram_bank = value & 0x7;
if ram_bank == 0x0 {
ram_bank = 0x1;
}
self.ram_bank = ram_bank;
self.ram_offset = self.ram_bank as u16 * 0x1000;
}
0x80..=0xfe => self.ppu.write(addr, value),
match addr & 0x00f0 {
0x00 => match addr & 0x00ff {
0x00 => self.pad.write(addr, value),
0x04..=0x07 => self.timer.write(addr, value),
_ => debugln!("Writing to unknown IO control 0x{:04x}", addr),
0x10..=0x26 | 0x30..=0x37 => self.apu.write(addr, value),
// 0xFF46 — DMA: OAM DMA source address & start
// and make this a separated dma.rs file
debugln!("Going to start DMA transfer to 0x{:x}00", value);
let data = self.read_many((value as u16) << 8, 160);
self.write_many(0xfe00, &data);
}
_ => self.ppu.write(addr, value),
}
// 0xFF51-0xFF52 - VRAM DMA source (CGB only)
0x51..=0x52 => (),
// 0xFF53-0xFF54 - VRAM DMA destination (CGB only)
0x53..=0x54 => (),
_ => debugln!("Writing to unknown IO control 0x{:04x}", addr),
_ => debugln!("Writing to unknown IO control 0x{:04x}", addr),
addr => panic!("Writing to unknown location 0x{:04x}", addr),
addr => panic!("Writing to unknown location 0x{:04x}", addr),
pub fn write_many(&mut self, addr: u16, data: &[u8]) {
for (index, byte) in data.iter().enumerate() {
self.write(addr + index as u16, *byte)
}
}
pub fn read_many(&mut self, addr: u16, count: u16) -> Vec<u8> {
let mut data: Vec<u8> = vec![];
for index in 0..count {
let byte = self.read(addr + index);
data.push(byte);
}
pub fn write_boot(&mut self, addr: u16, buffer: &[u8]) {
self.boot[addr as usize..addr as usize + buffer.len()].clone_from_slice(buffer);
}
pub fn write_ram(&mut self, addr: u16, buffer: &[u8]) {
self.ram[addr as usize..addr as usize + buffer.len()].clone_from_slice(buffer);
}
pub fn rom(&mut self) -> &mut Cartridge {
&mut self.rom
}
pub fn set_rom(&mut self, rom: Cartridge) {
self.rom = rom;